What do hyphae grow into




















Harris and M. Schaller, C. Borelli, H. Korting, and B. Baroni, B. Perfetto, I. Paoletti et al. Ran, T. Yoshiike, and H. Kaufman, B. Horwitz, L. Duek, Y. Ullman, and I. View at: Google Scholar R.

Warner, J. Schwartz, Y. Boissy, and T. Dawson Jr. Andersson, O. Rasool, M. Schmidt et al. La Valle, C. Bromuro, L. Ranucci, H. Muller, A. Crisanti, and A. Sun, N.

Solis, Q. Phan et al. King, H. Khan, J. Foye, J. Greenberg, and H. Sherwood-Higham, W. Zhu, C. Devine, G. Gooday, N. Gow, and D. Brand, K. Lee, V. Veses, and N. Nett, K. Marchillo, C. Spiegel, and D. Dongari-Bagtzoglou, H. Kashleva, P. Dwivedi, P. Diaz, and J. Zakikhany, J. Naglik, A. Schmidt-westhausen, G. Holland, M. Schaller, and B. McKenzie, U.

Koser, L. Lewis et al. Mennink-Kersten, J. Donnelly, and P. Brand, A. Vacharaksa, C. Bendel et al. Harriott, E. Lilly, T.

Rodriguez, P. Fidel, and M. Wilson, K. Haedicke, F. Dalle, and B. Mowat, C. Williams, B. Jones, S. McChlery, and G. S—S, Baillie and J. View at: Google Scholar M. Al-Fattani and L. Paramonova, B. Krom, H. Busscher, and P. Ghannoum, R. Jurevic, P. Mukherjee et al. Jarosz, D. Deng, H. Crielaard, and B.

Bamford, A. D'Mello, A. Nobbs, L. Dutton, M. Vickerman, and H. Han, R. Cannon, and S. Hornby, E. Jensen, A. Lisec et al. Chen, M. Fujita, Q. Feng, J. Clardy, and G. Dalle, B. L'Ollivier et al. Lorenz, J. Bender, and G. Phan, C.

Myers, Y. Fu et al. Phan, P. Belanger, and S. Hoyer and J. Wasylnka, A. Hissen, A. Wan, and M. S27—S30, Lopes Bezerra and S. Feldmesser, S. Tucker, and A. Nicola, E. Robertson, P. Albuquerque, L. View at: Google Scholar N. Gow and G. Luo, A. Ibrahim, B. Spellberg, C. Nobile, A. Mitchell, and Y. Staab, S. Bradway, P.

Fidel, and P. View at: Google Scholar U. Zeidler, T. Lettner, C. Lassnig et al. Banerjee, D. Thompson, A. Lazzell et al. Zheng, Y. Wang, and Y. Brown Jr. Giusani, X. Chen, and C. View at: Google Scholar C.

Nobile and A. Dwivedi, A. Thompson, Z. Xie et al. Money and F. Aguilar-Uscanga and J. Persat, N. Noirey, J. Diana et al. Staib, C. Zaugg, B. Mignon et al. Mora-Montes, M. Netea, G. Ferwerda et al. Hohl, H. Van Epps, A. Rivera et al. Cell 6 , — Hilfiker, S. Nature Neurosci. Gupta, G. A tip-high gradient of a putative plasma membrane SNARE approximates the exocytotic gradient in hyphal apices of the fungus Neurospora crassa. Two divergent plasma membrane syntaxin-like SNAREs, nsyn and nsyn2 , contribute to hyphal tip growth and other developmental processes in Neurospora crassa.

Lew R. Turgor regulation in hyphal organisms. Role of a mitogen-activated protein kinase cascade in ion flux-mediated turgor regulation in fungi. Cell 5 , — A suite of techniques are used to demonstrate the role of ion transport in turgor regulation, which is mediated by a MAPK cascade, in a fungus.

Turgor regulation in the osmosensitive cut mutant of Neurospora crassa. Brewster, J. An osmosensing signal transduction pathway in yeast. Science , — Kranz, M. Comparative genomics of the HOG-signaling system in fungi.

Maeda, T. Posas F. Alex, L. Hyphal development in Neurospora crassa : involvement of a two-component histidine kinase. USA 93 , — Schumacher, M. The osmotic-1 locus of Neurospora crassa encodes a putative histidine kinase similar to osmosensors of bacteria and yeast. Jones, C. The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa.

Cell 18 , — Ellis, S. Effect of osmotic stress on yield and polyol content of dicoarboximide-sensitive and -resistant strains on Neurospora crassa. Youssar, L. Genetic basis of the ovc phenotype of Neurospora : identification and analysis of a 77kb deletion. Ochiai, N. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa.

Pest Manag. Motoyama, T. An Os-1 family histidine kinase from a filamentous fungus confers fungicide-sensitivity to yeast. Fujimura, M. Sensitivity to phenylpyrrole fungicides and abnormal glycerol accumulation in Os and Cut mutant strains of Neurospora crassa.

Pesticide Sci. Turgor and net ion flux responses to activation of the osmotic MAP kinase cascade by fludioxonil in the filamentous fungus Neurospora crassa. Colot, H. A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Phenotype of a mechanosensitive channel mutant, mid-1 , in a filamentous fungus, Neurospora crassa. Cell 7 , — Ptk2 contributes to osmoadaptation in the filamentous fungus Neurospora crassa.

Kaminskyj, S. The relation between turgor and tip growth in Saprolegnia ferax : turgor is necessary, but not sufficient to explain apical extension rates. Harold, R. Growth and morphogenesis in Saprolegnia ferax : is turgor required? Walker, S. Invasive hyphal growth: an F-actin depleted zone is associated with invasive hyphae of the oomycetes Achlya bisexualis and Phytophthora cinnamomi.

Emerson, S. Slime, a plasmodial variant of Neurospora crassa. Genetica 34 , — Perkins, D. Chromosomal loci of Neurospora crassa. Leal-Morales, C. Alterations in the biosynthesis of chitin and glucan in the slime mutant of Neurospora crassa. Heath, I. Mechanisms of hyphal tip growth: tube dwelling amebae revisited.

An alternative to a simple version of turgor-driven growth, emphasizing the role of the protoplast within the cell wall. Mass flow and pressure-driven hyphal extension in Neurospora crassa.

The direct verification of mass flow in hyphal networks, and details of the magnitude of pressure gradients that are required to cause mass flow in a low-Reynolds-number environment. Robertson, N. Some observations on the water-relations of the hyphae of Neurospora crassa. Measurement of hyphal turgor. Measurement of turgor of the oomycete S. The methods would be the same for fungi. This article gives a good introduction to the thermodynamics of water potentials, experimental methodologies and experimental pitfalls.

Ng, S. A tether for Woronin body inheritance is associated with evolutionary variation in organelle positioning. PLoS Genet. Plamann, M. Cytoplasmic streaming in Neurospora : disperse the plug to increase the flow? Heaton, K. Growth-induced mass flows in fungal networks. B , — Sugden, K. Model of hyphal tip growth involving microtubule-based transport. E Stat. Soft Matter Phys. Boudaoud, A.

Growth of walled cells: from shells to vesicles. Freitag, M. GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Nelson, G.

Calcium measurement in living filamentous fungi expressing codon-optimized aequorin. Hickey, P. Live-cell imaging of filamentous fungi using vital fluorescent dyes. Methods Microbiol. Virag, A. A mutation in the Neurospora crassa actin gene results in multiple defects in tip growth and branching.

Lee, I. Null mutants of the Neurospora actin-related protein 1 pointed-end complex show distinct phenotypes. Cell 12 , — The effects of ropy-1 mutation on cytoplasmic organization and intracellular motility in mature hyphae of Neurospora crassa.

Mourino-Perez, R. Microtubule dynamics and organization during hyphal growth and branching in Neurospora crassa. Ramos-Garcia, S. Cytoplasmic bulk flow propels nuclei in mature hyphae of Neurospora crassa. Cell 8 , — Roca, M.

Nuclear dynamics, mitosis, and the cytoskeleton during the early stages of colony initiation in Neurospora crassa. Cell 9 , — Tucker, E. Cytoplasmic streaming does not drive intercellular passage in staminal hairs of Setcreasea purpurea. Suei, S. An F-actin-depleted zone is present at the hyphal tip of invasive hyphae of Neurospora crassa. Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa.

Harris, S. Cell 4 , — Gow, N. Transhyphal electrical currents in fungi. McGillviray, A. The transhyphal electrical current of Neurospora crassa is carried principally by protons. Takeuchi, Y. Transcellular ion currents and extension of Neurospors crassa hyphae.

Applied electrical fields polarize the growth of mycelial fungi. Lever, M. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex.

Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall.



0コメント

  • 1000 / 1000